An Algebraic and Logical Approach to Continuous

نویسنده

  • KLAAS PIETER HART
چکیده

Continuous mappings between compact Hausdorff spaces can be studied using homomorphisms between algebraic structures (lattices, Boolean algebras) associated with the spaces. This gives us more tools with which to tackle problems about these continuous mappings — also tools from Model Theory. We illustrate by showing that 1) thě Cech-Stone remainder [0, ∞) has a universality property akin to that of N * ; 2) a theorem of Ma´ckowiak and Tymchatyn implies it own generalization to non-metric continua; and 3) certain concrete compact spaces need not be continuous images of N * .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the pointfree counterpart of the local definition of classical continuous maps

The familiar classical result that a continuous map from a space $X$ to a space $Y$ can be defined by giving continuous maps $varphi_U: U to Y$ on each member $U$ of an open cover ${mathfrak C}$ of $X$ such that $varphi_Umid U cap V = varphi_V mid U cap V$ for all $U,V in {mathfrak C}$ was recently shown to have an exact analogue in pointfree topology, and the same was done for the familiar cla...

متن کامل

A duality between LM-fuzzy possibility computations and their logical semantics

Let X be a dcpo and let L be a complete lattice. The family σL(X) of all Scott continuous mappings from X to L is a complete lattice under pointwise order, we call it the L-fuzzy Scott structure on X. Let E be a dcpo. A mapping g : σL(E) −> M is called an LM-fuzzy possibility valuation of E if it preserves arbitrary unions. Denote by πLM(E) the set of all LM-fuzzy possibility valuations of E. T...

متن کامل

An Algebraic and Logical Approach to Continuous Images

Continuous mappings between compact Hausdorff spaces can be studied using homomorphisms between algebraic structures (lattices, Boolean algebras) associated with the spaces. This gives us more tools with which to tackle problems about these continuous mappings — also tools from Model Theory. We illustrate by showing that 1) the Čech-Stone remainder [0,∞) has a universality property akin to that...

متن کامل

Analytical and Verified Numerical Results Concerning Interval Continuous-time Algebraic Riccati Equations

This paper focuses on studying the interval continuous-time algebraic Riccati equation A∗X + XA + Q − XGX = 0, both from the theoretical aspects and the computational ones. In theoretical parts, we show that Shary’s results for interval linear systems can only be partially generalized to this interval Riccati matrix equation. We then derive an efficient technique for enclosing the united stable...

متن کامل

A Continuous Formulation for Logical Decisions in Differential Algebraic Systems using Mathematical Programs ofwith Complementarity Constraints

This work presents a methodology to represent logical decisions in differential algebraic equation simulation and constrained optimization problems using a set of continuous algebraic equations. The formulations may be used when state variables trigger a change in process dynamics, and introduces a pseudo-binary decision variable, which is continuous, but should only have valid solutions at val...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002